
Modern Object
Storage for
Cloud-Native
Applications
Dan Sullivan and Ed Tittel

•	A Primer on Cloud-Native and
Kubernetes from a Storage Standpoint

•	Storage Challenges for Containerized
Applications Orchestrated by
Kubernetes

•	What Makes Object Storage Such a Great
Fit for Cloud-Native and Kubernetes

Inside the Guide

i i

Modern Object Storage
for Cloud-Native
Applications
Express Edition

By Dan Sullivan and Ed Tittel

THE GORILLA GUIDE TO...®

Copyright © 2021 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher
except for the use of brief quotations in a book review. Printed in the United States
of America.

ACTUALTECH MEDIA

6650 Rivers Ave Ste 105 #22489
North Charleston, SC 29406-4829
www.actualtechmedia.com

i i i

PUBLISHER’S
ACKNOWLEDGEMENTS

EDITORIAL DIRECTOR
Keith Ward

DIRECTOR OF CONTENT DELIVERY
Wendy Hernandez

CREATIVE DIRECTOR
Olivia Thomson

SENIOR DIRECTOR OF CONTENT
Katie Mohr

PARTNER AND VP OF CONTENT
James Green

ABOUT THE AUTHOR

Dan Sullivan is a software architect and engineer specializing in
cloud architecture and analytics. He is the author of six books and
hundreds of articles and white papers spanning a wide range of IT
topics including cloud, monitoring, security, data architecture, and
machine learning.

Ed Tittel is a 30-plus year veteran of the IT industry who writes reg-
ularly about cloud computing, networking, security, and Windows
topics. Perhaps best known as the creator of the Exam Cram series of
certification prep books in the late 1990s, Ed writes and blogs regu-
larly for GoCertify.com, TechTarget, ComputerWorld, and other sites.
For more information about Ed, including a resume and list of publi-
cations, please visit EdTittel.com.

http://EdTittel.com

iv

ENTERING THE JUNGLE

Introduction: The New Business Imperatives� 7

Chapter 1: Cloud-Native Applications: Building on
Containers and Microservices� 9

Cloud-Native Architectures and Technologies� 11

Stateless vs. Stateful Applications� 12

Making Stateful Applications Work� 14

Kubernetes Storage Initiatives: CSI and COSI� 15

Storage for Containers vs. Storage in Containers� 16

Chapter 2: Storage Challenges for Containerized Apps� 19

Persistent Storage for Stateful Apps� 19

On-Demand, Dynamic Provisioning� 20

Automation for DevOps� 22

Chapter 3: Why Object Storage Is the Best Choice for
Cloud-Native Development � 24

Object Storage Benefits� 24

The Scality Solution� 28

v

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that
enjoys helping people learn. In the School
House callout, you’ll gain insight into
topics that may be outside the main
subject but are still important.

This is a special place where you can
learn a bit more about ancillary topics
presented in the book.

When we have a great thought, we
express them through a series of grunts
in the Bright Idea section.

Takes you into the deep, dark depths of a
particular topic.

Discusses items of strategic interest to
business leaders.

vi

ICONS USED IN THIS BOOK

DEFINITION
Defines a word, phrase, or concept.

PAY AT TENTION
We want to make sure you see this!

WATCH OUT!
Make sure you read this so you don’t make a
critical error!

TIP
A helpful piece of advice based on what
you’ve read.

KNOWLEDGE CHECK
Tests your knowledge of what you’ve read.

GPS
We’ll help you navigate your knowledge to the
right place.

INTRODUCTION

The New Business
Imperatives
Welcome to The Gorilla Guide To…® Modern Object Storage for Cloud-

Native Applications, Express Edition.

Today’s businesses work under increasing pressure to build applica-

tions faster and more efficiently. At the same time, digital transfor-

mation initiatives fundamentally change how those businesses deliver

products and services.

This creates unprecedented demand for developers, IT staff, and

underlying infrastructures to support such initiatives. Big data ana-

lytics and data science keep improving the amount of information and

insight we can extract from data, and informs profound emphasis on

data-driven decision making.

Ultimately, digital transformation and the insights and innovation

that data can bring, relies on an organization’s ability to collect, inte-

grate, and analyze large volumes of data. Machine learning (ML) and

artificial intelligence (AI) lets developers build applications to handle

tasks and solve problems that, in the past, would have demanded

copious human time and effort. And in fact, the ability to scale such

intelligent processing is what drives ever-increasing adoption and use

of ML and AI.

7

8T H E N E W B U S I N E S S I M P E R AT I V E S

Software engineering practices and operations management practices

that have served businesses well when working with mainframes and

on-premises, bare-metal, and virtualized servers aren’t well-suited

to addressing the demands of modern, hybrid cloud-based application

development and deployment.

Fortunately, a new, more effective, approach to application develop-

ment and deployment has evolved. It’s known as cloud-native appli-

cations. These applications are designed to scale with demand and run

in public and private clouds, while being resilient to failures.

Such applications make extensive use of platform-agnostic container

technologies such as Kubernetes and Docker to keep them portable,

flexible, and agile. They also use platform-agnostic storage services

and APIs to support containerized apps, persistent volumes, storage

management and migration, and more.

In this Gorilla Guide, we’ll take a look at how these tools support or-

ganizations and developers, and the importance of integrated devel-

opment and operations. Let’s start with a deeper dive into the rise of

cloud-native applications, and how they’re changing the game.

CHAPTER 1

Cloud-Native Applications:
Building on Containers and
Microservices

Accessing, using, and interacting with cloud-based applications, ser-

vices, and resources puts organizations in a complex and interesting

situation.

Behind the scenes, cloud platforms and services employ a veritable

ecosystem to support ready access to virtualized applications, ser-

vices, networks, platforms, and even entire infrastructures. This is

orchestrated via software and configuration data running in (and

across) one or more provider’s data centers.

If used correctly, numerous specific technologies come into play to

give organizations flexibility and interoperability when bringing

cloud-based services, storage, and networking into play. There are

several key elements that anchor and inform this deliberate imple-

mentation, deployment, and management strategy:

•	 Containers: These lightweight runtime constructs function as

discrete and separate process and resource handlers within which

one or more applications or services can run. By design, contain-

ers include only the resources necessary for those applications

and services. Thus, more containers can run on any given server

or cluster than traditional virtual machines, because containers

don’t include a full operating system or instantiate services, pro-

tocols, libraries, and functions they won’t use, unlike VMs.

9

Cloud-Native Applications: Building on Containers and Microservices 1 0

•	 Kubernetes: Kubernetes is the leading platform for container

orchestration. While there are other container orchestration

products, Kubernetes should be seen as the de facto standard.

It’s open source, portable, and extensible, and manages contain-

erized workloads and services with a large and growing ecosys-

tem of tools.

•	 Microservices: This software development method focuses on

building single-function modules, each with its own well-defined

interfaces and operations. These modules are then assembled and

combined to build applications or services. Small and simple by

design, microservices require less time and work to implement,

test, maintain, and adapt. And because any microservice can be

updated, tested, and deployed independently of the others, on-

going development is simpler and faster. Modern microservices

are containerized, so they can run on any OS or cloud platform

that supports that container type. This is a profound benefit, and

explains how microservices workloads and their data can migrate

among data centers, private, and public clouds with relative ease

and dispatch.

•	 DevOps: This term represents the conflation of development and

operations under a single overarching development methodology.

DevOps seeks to shorten the development lifecycle while also de-

livering features, fixes, updates, and enhancements frequently to

better meet business or organizational objectives. DevOps prac-

titioners often refer to “CI/CD,” which stands for “continuous

integration/continuous delivery (or deployment, in some cases)”.

Continuous integration is the process of making small updates to

software and committing the changes to a centralized repository,

sometimes as often as daily, to improve the product bit by bit

over time. Continuous delivery is the next step in that sequence.

It refers to automating application delivery into the various in-

frastructure pipelines for eventual release into the wild, wherever

that wild is. See Figure 1.

Cloud-Native Applications: Building on Containers and Microservices 1 1

Cloud-Native Architectures and
Technologies
Cloud-native approaches to development use containers to define and

build microservices-based architectures. Because such architectures

consist of re-usable modules and components that can be assem-

bled (and later adjusted or recomposed) to deliver applications and

services to end users, they’re not only immediately useful, but also

flexible and adaptable in the face of change.

Organizations follow DevOps principles to guide them in designing,

building, maintaining, and delivering cloud-native, containerized,

and microservices-based applications and services. This approach

enables organizations to meet current business objectives through

streamlined, lean product development and delivery processes.

It also helps them adapt quickly to changes as they occur, to accom-

modate market changes, organizational change, or new tools and

technologies to improve productivity and profitability.

CONTINUOUS
INTEGRATION

CONTINUOUS
DELIVERY

Code

Dev Ops

Test

Release

Deploy

O
perate

Monitor

Plan

Bu
ild

Figure 1: A typical CI/CD process pipeline

Cloud-Native Applications: Building on Containers and Microservices 1 2

Stateless vs. Stateful Applications
In general, the distinction between stateless and stateful refers to

persistence of data or memory between transactions or instantiations.

When it comes to containerized applications, for example, stateless

applications do not store data, whereas stateful applications in-

clude storage access so that they can acquire prior state and data, if

any, when they start up, and save existing state and data when they

pause or stop.

Maintaining state allows applications to work from information,

knowledge, and data acquired or generated during prior activity.

Stateless applications use transitory data, where state must typically

be stored in a separate backend service such as a database.

For stateless applications, storage is ephemeral. That means its

contents disappear if the container stops running, or gets restarted.

When they first adopt containers, organizations tend to use stateless

applications because they are easily implemented and adapted in

The Cloud Native Computing Foundation defines
cloud-native in this way: Cloud-native technologies
empower organizations to build and run scalable applica-
tions in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative
APIs exemplify this approach.

These techniques enable loosely coupled systems that
are resilient, manageable, and observable. Combined with
robust automation, they allow engineers to make high-im-
pact changes frequently and predictably with minimal
muss and fuss.

https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md

Cloud-Native Applications: Building on Containers and Microservices 1 3

cloud-native architectures. Because they do not typically embody or

incorporate more traditional monolithic code, stateless containerized

apps built on microservices are also easier to move around and scale.

Stateful applications typically involve transactions, where the server

processes requests based on data they provide but also uses informa-

tion stored from previous requests. Thus, the server must be able to

store and retain state information from the past, as well as respond to

current requests on demand (see Figure 2).

Orchestration for stateful applications requires identifying the best

location to run the container (or container collection) involved in its

execution to best handle the application’s needs for storage, net-

working, and to maintain a consistent and workable I/O path. In some

cases, orchestration for stateful applications might also ensure high

availability, by moving containers or remounting storage volumes

without making (or needing) any changes to application code.

Retrieve Update Retrieve Update

State

Stateful

Computation 1 Computation 2

State 1 State 2 State 3

Stateless

Computation 1 Computation 2

Figure 2: A comparison of a stateful vs. a stateless application

Cloud-Native Applications: Building on Containers and Microservices 1 4

Making Stateful Applications Work
Stateful applications generally work with an underlying storage layer

through a set of application programming interfaces, or APIs. In fact,

storage attributes required in a stateful containerized app pose im-

portant design and implementation decisions for organization who

build and use them.

In a cloud-based environment, storage needs the same attributes that

apply to the rest of that environment. As a container moves around

a cluster or through the cloud, it must maintain its connection to its

storage volume(s). Thus, a software layer between the application

and its container, and the underlying storage layer, can automatically

manage such connections, and change locations as needed (within or

across clusters, availability zones, and even multiple clouds).

Building cloud-native applications generally involves dense conglom-

erations of microservices and their data. Making this work depends on

a flexible and elastic software layer to mediate between those micro-

services and the underlying native storage (either on-premises or in

the cloud).

Behind the scenes, cloud-native containerized environments must

provide mechanisms to create persistent container storage volumes.

This kind of capability involves integrating a persistent storage layer

with container orchestration that uses a dynamic storage platform.

Such a platform should also comply with data security, protection,

and resilience requirement for application deployment. This creates

what might be called a software-defined storage platform, which

microservices and their parent containers can access abstractly, while

the orchestrator manages the details and the connections in the back-

ground. This also lets developers, IT, and even users (with self-service

portal access) provision storage on their own without involving a

storage administrator.

Cloud-Native Applications: Building on Containers and Microservices 1 5

Kubernetes Storage Initiatives: CSI
and COSI
Persistent volumes (PV) is the construct through which Kubernetes

exposes permanent storage to applications and services (and their

users). PV resources are available cluster-wide, and are often backed

with attached external storage. In fact, Kubernetes uses control plane

interfaces through orchestration to link with external storage, so

storage vendors must provide volume plug-ins that work with the

Kubernetes codebase (called in-tree volume plug-ins).

Such plug-ins can pose issues for storage vendors and Kubernetes

developers alike. From the vendor side, it means their code has to be

compiled, packaged and shipped within a Kubernetes distribution.

Not only does this expose their code, it also ties it to the Kubernetes

release cycle. In turn this can pose testing issues for would-be users.

From the users’ perspective, it also limits their storage options to

those plug-ins included with Kubernetes code base.

Software-defined storage distinguishes between the
storage hardware where the bits reside and the storage
controller software, which manages access to storage
addresses, reading and writing bits (or blocks, as is
typical on solid-state devices), and integrity checks (and
associated bad block lists, over provisioning, and so forth).
Software-defined storage lets the storage system define
and expose various types of storage to applications, such
as object, block, and filesystem storage. It also manages
the details behind the scenes to provide a consistent
logical view of storage for application use, while handling
data about where the data resides, in what format, what
kind of storage units it uses, and so on.

Cloud-Native Applications: Building on Containers and Microservices 1 6

To address these issues, the Kubernetes community introduce its

Container Storage Interface (CSI) in 2017. CSI is a standard through

which arbitrary block and file storage systems may be accessed within

containerized workloads running on Kubernetes (or other orchestra-

tor using CSI).

CSI makes the Kubernetes storage layer open and extensible. Third-

party storage providers or vendors can use it to create and share vol-

ume plug-ins to expose their storage to Kubernetes. They no longer

need to include those plug-ins with the Kubernetes code base, either.

CSI does a great job with block and file storage, but as the COSI GitHub

status page asserts, “primitives for file/block storage do not extend

well to object storage.” (See the reference for a list of reasons why.)

Thus, COSI—the Container Object Storage Interface—defines a set of

abstractions to provision and manage object storage, defining a com-

mon object storage layer across multiple vendors.

The design is modeled on CSI, and has garnered support from mak-

ers of numerous open source and commercial storage systems. COSI

defines a set of resources to work with object “buckets” (which are to

objects as volumes are to blocks and files), to provision and manage

object buckets across the data and application lifecycles. Using COSI,

Kubernetes can manage object stores in a standard, native way.

Storage vendors can expose their object stores via COSI, independent

of the Kubernetes codebase. It’s a win-win situation.

Storage for Containers vs. Storage in
Containers
Storage for containers exposes storage to a container or group of con-

tainers through an external mount point over a network. Sometimes

known as container-ready storage, it can work with systems based on

software-defined storage (SDS), network-attached storage (NAS), or

storage-area networks (SANs). Container-ready storage is typically

accessed via a vendor-defined or standard API.

https://github.com/kubernetes-sigs/container-object-storage-interface-spec

Cloud-Native Applications: Building on Containers and Microservices 1 7

It’s important to understand that container-ready storage may not

be an ideal solution for containers and their constituent apps and

services, label notwithstanding. That’s because relatively few such

storage platforms have APIs that Kubernetes can use for dynamic

provisioning and storage delivery.

Storage inside containers, deployed alongside containerized appli-

cations or services, works to the benefit of developers and IT admins

alike. This approach containerizes storage services so they can be

managed using Kubernetes orchestration and control. This approach

leaves admins with less housekeeping to do (automation will handle

that for them both quickly and accurately).

Because admins can run the storage platform, applications, and ser-

vices on a uniform infrastructure, there’s less learning curve involved

(the same tools, commands, and automation applies across the board,

rather than having to learn multiple sets of same). Often there’s

also less expense involved, because it’s cheaper, easier, and less

time-consuming to procure more of one kind of infrastructure than

less of two or more kinds.

For developers, benefits come from self-service: Rather than working

through storage admins to provision their applications and services

with storage, they can provision friendly and elastic container-

ized storage services themselves. Additionally, its APIs are usually

well-defined and understood, and easy to work with, test, and deploy.

Storage in containers involves a growing set of storage classes that

range across many use cases. These include boot volumes, log files

(circular and linear), transactional databases, and application data

using traditional file and emerging object APIs, along with backup

datasets, images and snapshots plus archival holdings.

Since object data alone covers an enormous number of data types and

serves analytics applications that include Elastic, Cloudera, Spark,

Splunk, Vertica, Weka and more, containerized apps need storage

Cloud-Native Applications: Building on Containers and Microservices 1 8

access more than ever. CSI covers file and block storage access and

management, while COSI handles object storage. But calls for storage

access and services in containers is never-ending and nearly unlimit-

ed in size, scope and variety.

CHAPTER 2

Storage Challenges for
Containerized Apps
Because stateless apps carry the data and state information they need

to do their jobs, storage challenges for containerized apps fall mostly

on those of the stateful variety. That said, organizations should adopt

storage layer software that is either open source or that works with

the various cloud platforms they use (or would like to use).

This layer is least likely to pose interoperability or access problems

if it’s open source. Either way, storage layer software provides the

ability to position containers where it makes best sense, and to move

containers around if and when a change of location (and possibly,

platform) is warranted.

Persistent Storage for Stateful Apps
As we’ve discussed, stateful apps need persistent storage. In fact, few

applications or services can do anything useful or interesting without

some means for data storage and retrieval. This is a challenge for con-

tainers, which are by nature ephemeral and transient. They might live

on one server for a while, then move over to a different server after

that if an admin or an orchestrator dictates a move.

While containers keep their software and dependencies intact wher-

ever they go, they deliberately don’t store data—this helps them stay

compact and predictable in size. VMs don’t have such limitations:

They operate as images that can be modified, then snapshotted

19

Storage Challenges for Containerized Apps 2 0

and saved. Containers work much the same way, except for data

persistence. If the container hiccups or gets restarted, all data asso-

ciated with its constituent applications or services gets lost, unless

it has connections to a storage layer where such data can persist

independently, but in close association to the container (wherever it

may reside).

Though containers may have access to local storage, that may not be

enough. Stateful applications require state, data, and configuration

to persist across time and space. Thus, a database container needs a

persistent store for its data—in fact, that’s where the actual content

of the database lives. In general, stateful applications require data to

survive independently of the container itself (which can come and go

quite frequently).

Local storage isn’t enough, either: If the container moves to another

location, it loses it connection to local storage (and the data it con-

tains). In a nutshell, that’s why stateful applications require access to

a storage layer to provide them with the ability to keep state and con-

figuration information around, along with the data that stateful ap-

plications and services expect and need to have at their beck and call.

On-Demand, Dynamic Provisioning
Dynamic provisioning has shown itself to be a major improvement

for containerized storage. Static provisioning was the order of the day

before dynamic provisioning came along, but it had two major waste

issues: time and storage space.

Static provisioning requires an administrator to work with a storage

provider to obtain more storage space (additional volumes). The same

thing applied to developers, who first had to calculate how much stor-

age they might need, then request it from an administrator.

Developers creating stateful containerized applications have two ma-

jor hurdles to jump. First and foremost, they must be able to provision

Storage Challenges for Containerized Apps 2 1

the storage their application or service needs both easily and quickly.

Second, they must be sure that this application or service can access

that storage so that the state information, configuration info, and

data will persist as and when it must.

A proper containerized storage framework lets administrators pro-

vision volumes as needed from storage platforms that may reside

on-premises in a public or private cloud. Kubernetes, through CSI and

COSI, supports plug-ins to permit a container to mount the volumes

it needs, after which it can start that container and tie that mounted

volume to some directory accessible to the container. The same is true

for object buckets and block stores—it all depends on what the con-

tainerized application or service needs and uses.

Dynamism comes into play as containers are instantiated and moved.

The containerized applications tell the orchestrator what kinds of

storage resources they need to run. The orchestrator examines the

storage layer to identify the resources, obtain access, and expose the

volumes or buckets needed while the application or service is running.

Should the application pause or restart, the orchestrator keeps the

storage connection data handy, so when it resumes they, too, can

carry on where they left off. The same general principle applies if an

application or service workload moves from one cluster or cloud to

another, except that storage units may need to be copied to another

location, to meet associated performance, security, or compliance

requirements. This should all be transparent to the end user.

Dynamic provisioning and association for containerized applications

and services also means that as containers move or scale out, asso-

ciated storage components move or scale out with them. This is built

into the orchestrator, and lets developers and users take advantage

of what the containerized environment can deliver without having to

worry overmuch about the details involved in pauses, restarts, hand-

offs, and so forth.

Storage Challenges for Containerized Apps 2 2

Automation for DevOps
Following DevOps approaches and practices for containerized apps

and services and their storage means that organizations adopt CI/CD

as both mantra and method. Automation is at the heart of this pro-

cess, and provides these benefits:

•	 Speed: Computers can do things faster than humans. This isn’t

breaking news, but it’s important to keep in mind for DevOps.

Automation takes advantage of this characteristic, responding at

computer speeds to alarms, alerts, and other events that require

quick or immediate action.

•	 Accuracy: Automation, once tested and vetted, fumbles no further

fingers at the keyboard. If it’s right once, it’s always right there-

after. Human input often includes input errors that can vary from

simple typos to invalid instructions to potentially damaging mis-

takes, misconfigurations, or deletions. Automation is vastly more

reliable and accurate than humans on the loose.

•	 Scalability: Without automation, cloud environments wouldn’t

scale, either up or down, period. Automation makes the kind of

configurations, provisioning, and workload migration needed to

support scaling usable and practical. The sheer scope and scale of

the cloud, and its incredible uptake, all testify to that.

•	 Agility: Agility enables rapid provisioning of computer resources,

so that cloud environments can spin up new containerized apps or

services, VMs, or virtualized platforms, and storage in minutes.

Automation applies across the lifecycle in a DevOps world, and re-

sults in shortened development cycles. It also offers more “what-

ifs” or A/B tests to improve and enhance data, services, and the

overall user experience.

Storage Challenges for Containerized Apps 2 3

•	 Portability: Portability is provided through standard, widely used

APIs, protocols, tools and technologies. Portability lets workloads

and data move where they provide the best value. Portability also

brings flexibility—including the choice of cloud platforms and

services based purely on merit and cost, with no fear of vendor

lock-in—to the party.

CHAPTER 3

Why Object Storage
Is the Best Choice for
Cloud-Native Development

As already stated, object storage provides a set of tools to accommo-

date huge volumes of data in many forms and formats, and covers

the gamut from unstructured to semi-structured to structured

data. Because it can handle all the data types that comes its way,

object storage is an excellent fit for cloud-native, Kubernetes-based

containerized applications and services (and the storage that sup-

ports them).

Kubernetes is a powerful container orchestration tool and provides a

robust set of features, including storage solutions. Object storage, in

particular, is an efficient and cost-effective way to provide storage for

cloud-native applications.

Object Storage Benefits
Object storage that can be deployed and managed by Kubernetes fits

well with the needs of cloud-native applications. Object storage from

the cluster can also reduce the need to configure and manage NAS,

SAN, direct-attached storage (DAS), and other forms of persistent

storage. These resource-intensive chores aren’t needed when object

storage is available, and explains why it’s getting so much traction

and buy-in in today’s increasingly cloud-native world.

24

Why Object Storage Is the Best Choice for Cloud-Native Development 2 5

Microservices

There are many other reasons why object storage makes the

most sense for cloud-native applications and services, including

microservices.

Microservices are predicated on APIs, so the RESTful API object

storage is based on is a great fit for incorporating and using storage

within these basic building blocks for containerized applications

and services.

Kubernetes
Kubernetes is all about orchestration and automation, independent of

any geographic location. The means there is no anchor point keeping

it weighed down and destroying application and data portability.

This, too, makes the familiar HTTP/HTML-based RESTful API

object storage is known for a great fit as it allows anywhere access.

Portability is preserved, which is crucial for cloud-based development

and operations management.

Web Scale
Cloud-native architecture can handle data at web scale, which is a key

differentiator from block and file storage. The inability of those stor-

age types to scale anywhere near as well as object storage disqualifies

them for the most part. This is increasingly important as data cre-

ation across the globe explodes with the cloud, edge computing, the

Internet of Things (IoT), and so on. The simple fact is that block and

file storage can’t keep up, leaving object storage as the default answer.

Why Object Storage Is the Best Choice for Cloud-Native Development 2 6

Persistence
As discussed in the previous chapter, persistent storage for stateful

apps can pose development and implementation challenges. While

CSI drivers offered a workaround that can accommodate block and file

storage, object storage needs minimal to no adaptation layer to deliver

robust, reliable, web-scale storage.

In fact, object storage can achieve the same results as block and file

storage. But it does so with fewer required resources (compute,

networking, and storage), reduced hurdles (fewer roadblocks or con-

straints for sharing, synchronization, replication, snapshotting, and

I/O activity), and at lower risk. Where file and block storage provide

cloud-ready storage, object storage functions as true cloud-na-

tive storage.

The Data Tsunami
The best current estimates show that

about 2.5 quintillion bytes of data are cre-

ated every day, and that about 90% of the

world’s data has been created in the last

two years alone.

In addition, information from Domo

breaks down some of the chief types of data being created. Every day, for

example, Zoom hosts 208,333 participants in video meetings; Instagram

users post 347,222 stories; YouTube users upload 500 hours of vid-

eo; Amazon ships 6,659 packages; and Netflix users stream 404,444

hours of video.

Most of that data will be kept in object storage, highlighting its impor-

tance now and into the future.

https://www.domo.com/learn/data-never-sleeps-8

Why Object Storage Is the Best Choice for Cloud-Native Development 2 7

Native Architecture

Furthermore, object storage that’s architected from the ground

up to run as containerized services would be directly managed by

Kubernetes. It can either be co-hosted with the app or hosted some-

where else, as needs, costs, and performance considerations dictate.

By contrast, cloud-ready block and file storage is commonly deployed

independently and not managed by Kubernetes. This helps explain

why object storage, managed, and run inside Kubernetes, offers so

much more in terms of flexibility, automation, and integration.

DevOps Flexibility
Yet another consideration is that some DevOps teams don’t need or

want compute and storage co-located together. In such a case, the

perfect object storage solution is Kubernetes-based, but pre-pack-

aged within its own Kubernetes distribution.

In fact, this method of delivery supports one-click install on

bare-metal servers. The point here is that object storage provides op-

tions, and that’s always a good thing for IT staff, as they can tune the

solution for their specific operating environment.

The SDS Advantage
When delivered as SDS, object storage runs on commodity, indus-

try-standard servers, and is both hardware-independent and hard-

ware-agnostic. This is the same blueprint that drove the design of

containers and Kubernetes clusters, and still serves today as necessary

pre-requisite for running Kubernetes clusters and containerized apps

and services.

This independence has other benefits as well, including the avoid-

ance of vendor lock-in and all the attendant problems of high costs,

limited flexibility, and less ability to customize for infrastructure

optimization.

Why Object Storage Is the Best Choice for Cloud-Native Development 2 8

The Scality Solution
By now, you’ve seen that object storage is the best solution for a great

many cloud-native development environments. It’s the only technol-

ogy that’s truly scalable, usable, and affordable enough to accommo-

date web-scale data sets.

Throughout this Gorilla Guide, you’ve learned how modern object

storage supports and enables cloud-based apps. You’ve also seen how

cloud-native applications are designed around microservices that can

leverage the advantages of object storage.

An ideal object storage system is lightweight and easy to operate, even

in the case of edge deployments. Modern applications are not limited

to running in a single cloud, so their object storage systems should be

multi-cloud-capable.

As you explore options for object storage, put Scality at the top of your

search list. They specialize in object storage for cloud-native scenari-

os, and have solutions that will help you get the most out of your cloud

investments.

To learn more about modern object storage for cloud-native applica-

tions, check out the portfolio of Scality ARTESCA solutions with HPE.

http://www.scality.com/products/artesca
https://www.scality.com/products/artesca

ABOUT SCALITY & HPE

Scality® storage propels companies to unify data management no

matter where data lives—from edge to core to cloud. Our market-

leading file and object storage software protects data on-premises and

in hybrid and multi-cloud environments. With RING and ARTESCA,

Scality’s approach to managing data across the enterprise accelerates

business insight for sound decision-making and maximum return

on investment. To compete in a data-driven economy, IT leaders and

application developers trust Scality to build sustainable, adaptable

solutions. Scality is recognized as a leader by Gartner and IDC. Follow

us @scality and LinkedIn. Visit www.scality.com, or subscribe to our

company blog.

Hewlett Packard Enterprise is the global edge-to-cloud platform-as-

a-service company that helps organizations accelerate outcomes by

unlocking value from all of their data, everywhere. Built on decades

of reimagining the future and innovating to advance the way people

live and work, HPE delivers unique, open and intelligent technology

solutions, with a consistent experience across all clouds and edges,

to help customers develop new business models, engage in new ways,

and increase operational performance. For more information, visit:

www.hpe.com.

29

https://www.scality.com/products/ring
https://www.scality.com/products/artesca
https://twitter.com/scality
https://www.linkedin.com/company/scality/
http://www.scality.com/
https://www.scality.com/solved/
http://www.hpe.com/

ABOUT ACTUALTECH MEDIA

ActualTech Media is a B2B tech marketing company that connects en-

terprise IT vendors with IT buyers through innovative lead generation

programs and compelling custom content services.

ActualTech Media’s team speaks to the enterprise IT audience because

we’ve been the enterprise IT audience.

Our leadership team is stacked with former CIOs, IT managers, archi-

tects, subject matter experts and marketing professionals that help

our clients spend less time explaining what their technology does and

more time creating strategies that drive results.

If you’re an IT marketer and you’d like your own custom
Gorilla Guide® title for your company, please visit
https://www.gorilla.guide/custom-solutions/

30

	The New Business Imperatives
	Cloud-Native Applications: Building on Containers and Microservices
	Cloud-Native Architectures and Technologies
	Stateless vs. Stateful Applications
	Making Stateful Applications Work
	Kubernetes Storage Initiatives: CSI and COSI
	Storage for Containers vs. Storage in Containers

	Storage Challenges for Containerized Apps
	Persistent Storage for Stateful Apps
	On-Demand, Dynamic Provisioning
	Automation for DevOps

	Why Object Storage Is the Best Choice for Cloud-Native Development
	Object Storage Benefits
	The Scality Solution

