> |
() ActualTech Media 5553 SCALITY HewlettPackard

Enterprise

THE

GORILLA
GUIDE r0...°

EXPRESS EDITION

Modern Object
Storage for

Cloud-Native
Applications

Dan Sullivan and Ed Tittel

¢ A Primer on Cloud-Native and
Kubernetes from a Storage Standpoint

e Storage Challenges for Containerized
Applications Orchestrated by
Kubernetes

e What Makes Object Storage Such a Great

v Fit for Cloud-Native and Kubernetes

THE GORILLA GUIDE TO...®

Modern Object Storage
for Cloud-Native
Applications

Express Edition

By Dan Sullivan and Ed Tittel

Copyright © 2021 by ActualTech Media

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher
except for the use of brief quotations in a book review. Printed in the United States
of America.

ACTUALTECH MEDIA

6650 Rivers Ave Ste 105 #22489
North Charleston, SC 29406-4829
www.actualtechmedia.com

PUBLISHER'S
ACKNOWLEDGEMENTS

EDITORIAL DIRECTOR
Keith Ward

DIRECTOR OF CONTENT DELIVERY
Wendy Hernandez

CREATIVE DIRECTOR
Olivia Thomson

SENIOR DIRECTOR OF CONTENT
Katie Mohr

PARTNER AND VP OF CONTENT
James Green

ABOUT THE AUTHOR

Dan Sullivan is a software architect and engineer specializing in
cloud architecture and analytics. He is the author of six books and
hundreds of articles and white papers spanning a wide range of IT
topics including cloud, monitoring, security, data architecture, and
machine learning.

Ed Tittel is a 30-plus year veteran of the IT industry who writes reg-
ularly about cloud computing, networking, security, and Windows
topics. Perhaps best known as the creator of the Exam Cram series of
certification prep books in the late 1990s, Ed writes and blogs regu-
larly for GoCertify.com, TechTarget, ComputerWorld, and other sites.
For more information about Ed, including a resume and list of publi-
cations, please visit EdTittel.com.

http://EdTittel.com

ENTERING THE JUNGLE

Introduction: The New Business Imperatives... 7

Chapter 1: Cloud-Native Applications: Building on

Containers and Microservices 9
Cloud-Native Architectures and Technologies 11
Stateless vs. Stateful Applications 12
Making Stateful Applications Work. 14
Kubernetes Storage Initiatives: CSl and COSI 15
Storage for Containers vs. Storage in Containers......... 16

Chapter 2: Storage Challenges for Containerized Apps......19

Persistent Storage for Stateful Apps 19
On-Demand, Dynamic Provisioning 20
Automation for DevOps 22

Chapter 3: Why Object Storage Is the Best Choice for
Cloud-Native Development 24

Object Storage Benefits 24
The Scality Solution 28

CALLOUTS USED IN THIS BOOK

The Gorilla is the professorial sort that
enjoys helping people learn. In the School
House callout, you'll gain insight into
topics that may be outside the main
subject but are still important.

This is a special place where you can
learn a bit more about ancillary topics
presented in the book.

When we have a great thought, we
express them through a series of grunts
in the Bright Idea section.

Takes you into the deep, dark depths of a
particular topic.

Discusses items of strategic interest to
business leaders.

ICONS USED IN THIS BOOK

®
®
@
©,
®
®

DEFINITION
Defines a word, phrase, or concept.

KNOWLEDGE CHECK
Tests your knowledge of what you've read.

PAY ATTENTION
We want to make sure you see this!

GPS

We'll help you navigate your knowledge to the
right place.

WATCH OUT!

Make sure you read this so you don’t make a
critical error!

TIP

A helpful piece of advice based on what
you've read.

vi

INTRODUCTION

The New Business
Imperatives

Welcome to The Gorilla Guide To...* Modern Object Storage for Cloud-
Native Applications, Express Edition.

Today’s businesses work under increasing pressure to build applica-
tions faster and more efficiently. At the same time, digital transfor-
mation initiatives fundamentally change how those businesses deliver
products and services.

This creates unprecedented demand for developers, IT staff, and
underlying infrastructures to support such initiatives. Big data ana-
lytics and data science keep improving the amount of information and
insight we can extract from data, and informs profound emphasis on
data-driven decision making.

Ultimately, digital transformation and the insights and innovation
that data can bring, relies on an organization’s ability to collect, inte-
grate, and analyze large volumes of data. Machine learning (ML) and
artificial intelligence (AI) lets developers build applications to handle
tasks and solve problems that, in the past, would have demanded
copious human time and effort. And in fact, the ability to scale such
intelligent processing is what drives ever-increasing adoption and use
of ML and Al

Software engineering practices and operations management practices
that have served businesses well when working with mainframes and
on-premises, bare-metal, and virtualized servers aren’t well-suited
to addressing the demands of modern, hybrid cloud-based application
development and deployment.

Fortunately, a new, more effective, approach to application develop-
ment and deployment has evolved. It’s known as cloud-native appli-
cations. These applications are designed to scale with demand and run
in public and private clouds, while being resilient to failures.

Such applications make extensive use of platform-agnostic container
technologies such as Kubernetes and Docker to keep them portable,
flexible, and agile. They also use platform-agnostic storage services
and APIs to support containerized apps, persistent volumes, storage
management and migration, and more.

In this Gorilla Guide, we’ll take a look at how these tools support or-
ganizations and developers, and the importance of integrated devel-
opment and operations. Let’s start with a deeper dive into the rise of
cloud-native applications, and how they’re changing the game.

THE NEW BUSINESS IMPERATIVES 8

CHAPTER 1

Cloud-Native Applications:
Building on Containers and
Microservices

Accessing, using, and interacting with cloud-based applications, ser-
vices, and resources puts organizations in a complex and interesting
situation.

Behind the scenes, cloud platforms and services employ a veritable
ecosystem to support ready access to virtualized applications, ser-
vices, networks, platforms, and even entire infrastructures. This is
orchestrated via software and configuration data running in (and
across) one or more provider’s data centers.

If used correctly, numerous specific technologies come into play to
give organizations flexibility and interoperability when bringing
cloud-based services, storage, and networking into play. There are
several key elements that anchor and inform this deliberate imple-
mentation, deployment, and management strategy:

¢ Containers: These lightweight runtime constructs function as
discrete and separate process and resource handlers within which
one or more applications or services can run. By design, contain-
ers include only the resources necessary for those applications
and services. Thus, more containers can run on any given server
or cluster than traditional virtual machines, because containers
don’t include a full operating system or instantiate services, pro-
tocols, libraries, and functions they won’t use, unlike VMs.

¢ Kubernetes: Kubernetes is the leading platform for container
orchestration. While there are other container orchestration
products, Kubernetes should be seen as the de facto standard.
It’s open source, portable, and extensible, and manages contain-
erized workloads and services with a large and growing ecosys-
tem of tools.

¢ Microservices: This software development method focuses on
building single-function modules, each with its own well-defined
interfaces and operations. These modules are then assembled and
combined to build applications or services. Small and simple by
design, microservices require less time and work to implement,
test, maintain, and adapt. And because any microservice can be
updated, tested, and deployed independently of the others, on-
going development is simpler and faster. Modern microservices
are containerized, so they can run on any OS or cloud platform
that supports that container type. This is a profound benefit, and
explains how microservices workloads and their data can migrate
among data centers, private, and public clouds with relative ease
and dispatch.

¢ DevOps: This term represents the conflation of development and
operations under a single overarching development methodology.
DevOps seeks to shorten the development lifecycle while also de-
livering features, fixes, updates, and enhancements frequently to
better meet business or organizational objectives. DevOps prac-
titioners often refer to “CI/CD,” which stands for “continuous
integration/continuous delivery (or deployment, in some cases)”.
Continuous integration is the process of making small updates to
software and committing the changes to a centralized repository,
sometimes as often as daily, to improve the product bit by bit
over time. Continuous delivery is the next step in that sequence.
It refers to automating application delivery into the various in-
frastructure pipelines for eventual release into the wild, wherever
that wild is. See Figure 1.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 10

CONTINUOUS CONTINUOUS
INTEGRATION DELIVERY

Figure 1: A typical CI/CD process pipeline

Cloud-Native Architectures and
Technologies

Cloud-native approaches to development use containers to define and
build microservices-based architectures. Because such architectures
consist of re-usable modules and components that can be assem-
bled (and later adjusted or recomposed) to deliver applications and
services to end users, they’re not only immediately useful, but also
flexible and adaptable in the face of change.

Organizations follow DevOps principles to guide them in designing,
building, maintaining, and delivering cloud-native, containerized,
and microservices-based applications and services. This approach
enables organizations to meet current business objectives through
streamlined, lean product development and delivery processes.

It also helps them adapt quickly to changes as they occur, to accom-
modate market changes, organizational change, or new tools and
technologies to improve productivity and profitability.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 11

The Cloud Native Computing Foundation defines

cloud-native in this way: Cloud-native technologies
empower organizations to build and run scalable applica-
tions in modern, dynamic environments such as public,
private, and hybrid clouds. Containers, service meshes,
microservices, immutable infrastructure, and declarative
APIs exemplify this approach.

These techniques enable loosely coupled systems that
are resilient, manageable, and observable. Combined with
robust automation, they allow engineers to make high-im-
pact changes frequently and predictably with minimal
muss and fuss.

Stateless vs. Stateful Applications

In general, the distinction between stateless and stateful refers to
persistence of data or memory between transactions or instantiations.
When it comes to containerized applications, for example, stateless
applications do not store data, whereas stateful applications in-
clude storage access so that they can acquire prior state and data, if
any, when they start up, and save existing state and data when they
pause or stop.

Maintaining state allows applications to work from information,
knowledge, and data acquired or generated during prior activity.
Stateless applications use transitory data, where state must typically
be stored in a separate backend service such as a database.

For stateless applications, storage is ephemeral. That means its
contents disappear if the container stops running, or gets restarted.
When they first adopt containers, organizations tend to use stateless
applications because they are easily implemented and adapted in

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 12

https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md

Stateful

Retrieve Update Retrieve Update

Computation 1 Computation 2

Stateless

D I €D BN G

Figure 2: A comparison of a stateful vs. a stateless application

cloud-native architectures. Because they do not typically embody or
incorporate more traditional monolithic code, stateless containerized
apps built on microservices are also easier to move around and scale.

Stateful applications typically involve transactions, where the server
processes requests based on data they provide but also uses informa-
tion stored from previous requests. Thus, the server must be able to
store and retain state information from the past, as well as respond to
current requests on demand (see Figure 2).

Orchestration for stateful applications requires identifying the best
location to run the container (or container collection) involved in its
execution to best handle the application’s needs for storage, net-
working, and to maintain a consistent and workable I/O path. In some
cases, orchestration for stateful applications might also ensure high
availability, by moving containers or remounting storage volumes
without making (or needing) any changes to application code.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 13

Making Stateful Applications Work

Stateful applications generally work with an underlying storage layer
through a set of application programming interfaces, or APIs. In fact,
storage attributes required in a stateful containerized app pose im-
portant design and implementation decisions for organization who
build and use them.

In a cloud-based environment, storage needs the same attributes that
apply to the rest of that environment. As a container moves around
a cluster or through the cloud, it must maintain its connection to its
storage volume(s). Thus, a software layer between the application
and its container, and the underlying storage layer, can automatically
manage such connections, and change locations as needed (within or
across clusters, availability zones, and even multiple clouds).

Building cloud-native applications generally involves dense conglom-
erations of microservices and their data. Making this work depends on
a flexible and elastic software layer to mediate between those micro-
services and the underlying native storage (either on-premises or in
the cloud).

Behind the scenes, cloud-native containerized environments must
provide mechanisms to create persistent container storage volumes.
This kind of capability involves integrating a persistent storage layer
with container orchestration that uses a dynamic storage platform.

Such a platform should also comply with data security, protection,
and resilience requirement for application deployment. This creates
what might be called a software-defined storage platform, which
microservices and their parent containers can access abstractly, while
the orchestrator manages the details and the connections in the back-
ground. This also lets developers, IT, and even users (with self-service
portal access) provision storage on their own without involving a
storage administrator.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 14

Kubernetes Storage Initiatives: CSI
and COSI

Persistent volumes (PV) is the construct through which Kubernetes
exposes permanent storage to applications and services (and their
users). PV resources are available cluster-wide, and are often backed
with attached external storage. In fact, Kubernetes uses control plane
interfaces through orchestration to link with external storage, so
storage vendors must provide volume plug-ins that work with the
Kubernetes codebase (called in-tree volume plug-ins).

Such plug-ins can pose issues for storage vendors and Kubernetes
developers alike. From the vendor side, it means their code has to be
compiled, packaged and shipped within a Kubernetes distribution.
Not only does this expose their code, it also ties it to the Kubernetes
release cycle. In turn this can pose testing issues for would-be users.
From the users’ perspective, it also limits their storage options to
those plug-ins included with Kubernetes code base.

Software-defined storage distinguishes between the

storage hardware where the bits reside and the storage
controller software, which manages access to storage
addresses, reading and writing bits (or blocks, as is
typical on solid-state devices), and integrity checks (and
associated bad block lists, over provisioning, and so forth).
Software-defined storage lets the storage system define
and expose various types of storage to applications, such
as object, block, and filesystem storage. It also manages
the details behind the scenes to provide a consistent
logical view of storage for application use, while handling
data about where the data resides, in what format, what
kind of storage units it uses, and so on.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 15

To address these issues, the Kubernetes community introduce its
Container Storage Interface (CSI) in 2017. CSI is a standard through
which arbitrary block and file storage systems may be accessed within
containerized workloads running on Kubernetes (or other orchestra-
tor using CSI).

CSI makes the Kubernetes storage layer open and extensible. Third-
party storage providers or vendors can use it to create and share vol-
ume plug-ins to expose their storage to Kubernetes. They no longer
need to include those plug-ins with the Kubernetes code base, either.

CSI does a great job with block and file storage, but as the COSI GitHub
status page asserts, “primitives for file/block storage do not extend
well to object storage.” (See the reference for a list of reasons why.)
Thus, COSI—the Container Object Storage Interface—defines a set of
abstractions to provision and manage object storage, defining a com-
mon object storage layer across multiple vendors.

The design is modeled on CSI, and has garnered support from mak-
ers of numerous open source and commercial storage systems. COSI
defines a set of resources to work with object “buckets” (which are to
objects as volumes are to blocks and files), to provision and manage
object buckets across the data and application lifecycles. Using COSI,
Kubernetes can manage object stores in a standard, native way.
Storage vendors can expose their object stores via COSI, independent
of the Kubernetes codebase. It’s a win-win situation.

Storage for Containers vs. Storage in
Containers

Storage for containers exposes storage to a container or group of con-
tainers through an external mount point over a network. Sometimes
known as container-ready storage, it can work with systems based on
software-defined storage (SDS), network-attached storage (NAS), or
storage-area networks (SANs). Container-ready storage is typically
accessed via a vendor-defined or standard API.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 16

https://github.com/kubernetes-sigs/container-object-storage-interface-spec

It’s important to understand that container-ready storage may not
be an ideal solution for containers and their constituent apps and
services, label notwithstanding. That’s because relatively few such
storage platforms have APIs that Kubernetes can use for dynamic
provisioning and storage delivery.

Storage inside containers, deployed alongside containerized appli-
cations or services, works to the benefit of developers and IT admins
alike. This approach containerizes storage services so they can be
managed using Kubernetes orchestration and control. This approach
leaves admins with less housekeeping to do (automation will handle
that for them both quickly and accurately).

Because admins can run the storage platform, applications, and ser-
vices on a uniform infrastructure, there’s less learning curve involved
(the same tools, commands, and automation applies across the board,
rather than having to learn multiple sets of same). Often there’s
also less expense involved, because it’s cheaper, easier, and less
time-consuming to procure more of one kind of infrastructure than
less of two or more kinds.

For developers, benefits come from self-service: Rather than working
through storage admins to provision their applications and services
with storage, they can provision friendly and elastic container-
ized storage services themselves. Additionally, its APIs are usually
well-defined and understood, and easy to work with, test, and deploy.

Storage in containers involves a growing set of storage classes that
range across many use cases. These include boot volumes, log files
(circular and linear), transactional databases, and application data
using traditional file and emerging object APIs, along with backup
datasets, images and snapshots plus archival holdings.

Since object data alone covers an enormous number of data types and
serves analytics applications that include Elastic, Cloudera, Spark,
Splunk, Vertica, Weka and more, containerized apps need storage

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 17

access more than ever. CSI covers file and block storage access and
management, while COSI handles object storage. But calls for storage
access and services in containers is never-ending and nearly unlimit-
ed in size, scope and variety.

CLOUD-NATIVE APPLICATIONS: BUILDING ON CONTAINERS AND MICROSERVICES 18

CHAPTER 2

Storage Challenges for
Containerized Apps

Because stateless apps carry the data and state information they need
to do their jobs, storage challenges for containerized apps fall mostly
on those of the stateful variety. That said, organizations should adopt
storage layer software that is either open source or that works with
the various cloud platforms they use (or would like to use).

This layer is least likely to pose interoperability or access problems
if it’s open source. Either way, storage layer software provides the
ability to position containers where it makes best sense, and to move
containers around if and when a change of location (and possibly,
platform) is warranted.

Persistent Storage for Stateful Apps

As we’ve discussed, stateful apps need persistent storage. In fact, few
applications or services can do anything useful or interesting without
some means for data storage and retrieval. This is a challenge for con-
tainers, which are by nature ephemeral and transient. They might live
on one server for a while, then move over to a different server after
that if an admin or an orchestrator dictates a move.

While containers keep their software and dependencies intact wher-
ever they go, they deliberately don’t store data—this helps them stay
compact and predictable in size. VMs don’t have such limitations:
They operate as images that can be modified, then snapshotted

19

and saved. Containers work much the same way, except for data
persistence. If the container hiccups or gets restarted, all data asso-
ciated with its constituent applications or services gets lost, unless
it has connections to a storage layer where such data can persist
independently, but in close association to the container (wherever it
may reside).

Though containers may have access to local storage, that may not be
enough. Stateful applications require state, data, and configuration
to persist across time and space. Thus, a database container needs a
persistent store for its data—in fact, that’s where the actual content
of the database lives. In general, stateful applications require data to
survive independently of the container itself (which can come and go
quite frequently).

Local storage isn’t enough, either: If the container moves to another
location, it loses it connection to local storage (and the data it con-
tains). In a nutshell, that’s why stateful applications require access to
a storage layer to provide them with the ability to keep state and con-
figuration information around, along with the data that stateful ap-
plications and services expect and need to have at their beck and call.

On-Demand, Dynamic Provisioning

Dynamic provisioning has shown itself to be a major improvement
for containerized storage. Static provisioning was the order of the day
before dynamic provisioning came along, but it had two major waste
issues: time and storage space.

Static provisioning requires an administrator to work with a storage
provider to obtain more storage space (additional volumes). The same
thing applied to developers, who first had to calculate how much stor-
age they might need, then request it from an administrator.

Developers creating stateful containerized applications have two ma-
jor hurdles to jump. First and foremost, they must be able to provision

STORAGE CHALLENGES FOR CONTAINERIZED APPS

the storage their application or service needs both easily and quickly.
Second, they must be sure that this application or service can access
that storage so that the state information, configuration info, and
data will persist as and when it must.

A proper containerized storage framework lets administrators pro-
vision volumes as needed from storage platforms that may reside
on-premises in a public or private cloud. Kubernetes, through CSI and
COSI, supports plug-ins to permit a container to mount the volumes
it needs, after which it can start that container and tie that mounted
volume to some directory accessible to the container. The same is true
for object buckets and block stores—it all depends on what the con-
tainerized application or service needs and uses.

Dynamism comes into play as containers are instantiated and moved.
The containerized applications tell the orchestrator what kinds of
storage resources they need to run. The orchestrator examines the
storage layer to identify the resources, obtain access, and expose the
volumes or buckets needed while the application or service is running.

Should the application pause or restart, the orchestrator keeps the
storage connection data handy, so when it resumes they, too, can
carry on where they left off. The same general principle applies if an
application or service workload moves from one cluster or cloud to
another, except that storage units may need to be copied to another
location, to meet associated performance, security, or compliance
requirements. This should all be transparent to the end user.

Dynamic provisioning and association for containerized applications
and services also means that as containers move or scale out, asso-
ciated storage components move or scale out with them. This is built
into the orchestrator, and lets developers and users take advantage
of what the containerized environment can deliver without having to
worry overmuch about the details involved in pauses, restarts, hand-
offs, and so forth.

STORAGE CHALLENGES FOR CONTAINERIZED APPS

Automation for DevOps

Following DevOps approaches and practices for containerized apps
and services and their storage means that organizations adopt CI/CD
as both mantra and method. Automation is at the heart of this pro-
cess, and provides these benefits:

Speed: Computers can do things faster than humans. This isn’t
breaking news, but it’s important to keep in mind for DevOps.
Automation takes advantage of this characteristic, responding at
computer speeds to alarms, alerts, and other events that require
quick or immediate action.

Accuracy: Automation, once tested and vetted, fumbles no further
fingers at the keyboard. If it’s right once, it’s always right there-
after. Human input often includes input errors that can vary from
simple typos to invalid instructions to potentially damaging mis-
takes, misconfigurations, or deletions. Automation is vastly more
reliable and accurate than humans on the loose.

Scalability: Without automation, cloud environments wouldn’t
scale, either up or down, period. Automation makes the kind of
configurations, provisioning, and workload migration needed to
support scaling usable and practical. The sheer scope and scale of
the cloud, and its incredible uptake, all testify to that.

Agility: Agility enables rapid provisioning of computer resources,
so that cloud environments can spin up new containerized apps or
services, VMs, or virtualized platforms, and storage in minutes.
Automation applies across the lifecycle in a DevOps world, and re-
sults in shortened development cycles. It also offers more “what-
ifs” or A/B tests to improve and enhance data, services, and the
overall user experience.

STORAGE CHALLENGES FOR CONTAINERIZED APPS

¢ Portability: Portability is provided through standard, widely used
APIs, protocols, tools and technologies. Portability lets workloads
and data move where they provide the best value. Portability also
brings flexibility—including the choice of cloud platforms and
services based purely on merit and cost, with no fear of vendor
lock-in—to the party.

STORAGE CHALLENGES FOR CONTAINERIZED APPS

CHAPTER 3

Why Object Storage
Is the Best Choice for
Cloud-Native Development

As already stated, object storage provides a set of tools to accommo-
date huge volumes of data in many forms and formats, and covers
the gamut from unstructured to semi-structured to structured
data. Because it can handle all the data types that comes its way,
object storage is an excellent fit for cloud-native, Kubernetes-based
containerized applications and services (and the storage that sup-
ports them).

Kubernetes is a powerful container orchestration tool and provides a
robust set of features, including storage solutions. Object storage, in
particular, is an efficient and cost-effective way to provide storage for
cloud-native applications.

Object Storage Benefits

Object storage that can be deployed and managed by Kubernetes fits
well with the needs of cloud-native applications. Object storage from
the cluster can also reduce the need to configure and manage NAS,
SAN, direct-attached storage (DAS), and other forms of persistent
storage. These resource-intensive chores aren’t needed when object
storage is available, and explains why it’s getting so much traction
and buy-in in today’s increasingly cloud-native world.

24

Microservices

There are many other reasons why object storage makes the
most sense for cloud-native applications and services, including
microservices.

Microservices are predicated on APIs, so the RESTful API object
storage is based on is a great fit for incorporating and using storage
within these basic building blocks for containerized applications
and services.

Kubernetes

Kubernetes is all about orchestration and automation, independent of
any geographic location. The means there is no anchor point keeping
it weighed down and destroying application and data portability.

This, too, makes the familiar HTTP/HTML-based RESTful API
object storage is known for a great fit as it allows anywhere access.
Portability is preserved, which is crucial for cloud-based development
and operations management.

Web Scale

Cloud-native architecture can handle data at web scale, which is a key
differentiator from block and file storage. The inability of those stor-
age types to scale anywhere near as well as object storage disqualifies
them for the most part. This is increasingly important as data cre-
ation across the globe explodes with the cloud, edge computing, the
Internet of Things (I0T), and so on. The simple fact is that block and
file storage can’t keep up, leaving object storage as the default answer.

WHY OBJECT STORAGE IS THE BEST CHOICE FOR CLOUD-NATIVE DEVELOPMENT 25

A N Y
The Data Tsunami

The best current estimates show that
about 2.5 quintillion bytes of data are cre-
ated every day, and that about 90% of the
world’s data has been created in the last

two years alone.

In addition, information from Domo

breaks down some of the chief types of data being created. Every day, for
example, Zoom hosts 208,333 participants in video meetings; Instagram
users post 347,222 stories; YouTube users upload 500 hours of vid-
eo; Amazon ships 6,659 packages; and Netflix users stream 404,444
hours of video.

Most of that data will be kept in object storage, highlighting its impor-
tance now and into the future.

Persistence

As discussed in the previous chapter, persistent storage for stateful
apps can pose development and implementation challenges. While
CSI drivers offered a workaround that can accommodate block and file
storage, object storage needs minimal to no adaptation layer to deliver
robust, reliable, web-scale storage.

In fact, object storage can achieve the same results as block and file
storage. But it does so with fewer required resources (compute,
networking, and storage), reduced hurdles (fewer roadblocks or con-
straints for sharing, synchronization, replication, snapshotting, and
1/0 activity), and at lower risk. Where file and block storage provide
cloud-ready storage, object storage functions as true cloud-na-
tive storage.

WHY OBJECT STORAGE IS THE BEST CHOICE FOR CLOUD-NATIVE DEVELOPMENT 26

https://www.domo.com/learn/data-never-sleeps-8

Native Architecture

Furthermore, object storage that’s architected from the ground
up to run as containerized services would be directly managed by
Kubernetes. It can either be co-hosted with the app or hosted some-
where else, as needs, costs, and performance considerations dictate.

By contrast, cloud-ready block and file storage is commonly deployed
independently and not managed by Kubernetes. This helps explain
why object storage, managed, and run inside Kubernetes, offers so
much more in terms of flexibility, automation, and integration.

DevOps Flexibility

Yet another consideration is that some DevOps teams don’t need or
want compute and storage co-located together. In such a case, the
perfect object storage solution is Kubernetes-based, but pre-pack-
aged within its own Kubernetes distribution.

In fact, this method of delivery supports one-click install on
bare-metal servers. The point here is that object storage provides op-
tions, and that’s always a good thing for IT staff, as they can tune the
solution for their specific operating environment.

The SDS Advantage

When delivered as SDS, object storage runs on commodity, indus-
try-standard servers, and is both hardware-independent and hard-
ware-agnostic. This is the same blueprint that drove the design of
containers and Kubernetes clusters, and still serves today as necessary
pre-requisite for running Kubernetes clusters and containerized apps
and services.

This independence has other benefits as well, including the avoid-
ance of vendor lock-in and all the attendant problems of high costs,
limited flexibility, and less ability to customize for infrastructure
optimization.

WHY OBJECT STORAGE IS THE BEST CHOICE FOR CLOUD-NATIVE DEVELOPMENT 27

The Scality Solution

By now, you’ve seen that object storage is the best solution for a great
many cloud-native development environments. It’s the only technol-
ogy that’s truly scalable, usable, and affordable enough to accommo-
date web-scale data sets.

Throughout this Gorilla Guide, you’ve learned how modern object
storage supports and enables cloud-based apps. You’ve also seen how
cloud-native applications are designed around microservices that can
leverage the advantages of object storage.

An ideal object storage system is lightweight and easy to operate, even
in the case of edge deployments. Modern applications are not limited
to running in a single cloud, so their object storage systems should be
multi-cloud-capable.

As you explore options for object storage, put Scality at the top of your
search list. They specialize in object storage for cloud-native scenari-
0s, and have solutions that will help you get the most out of your cloud
investments.

To learn more about modern object storage for cloud-native applica-
tions, check out the portfolio of Scality ARTESCA solutions with HPE.

WHY OBJECT STORAGE IS THE BEST CHOICE FOR CLOUD-NATIVE DEVELOPMENT 28

http://www.scality.com/products/artesca
https://www.scality.com/products/artesca

ABOUT SCALITY & HPE

“”' 5 SCALITY

Scality® storage propels companies to unify data management no
matter where data lives—from edge to core to cloud. Our market-
leading file and object storage software protects data on-premises and
in hybrid and multi-cloud environments. With RING and ARTESCA,
Scality’s approach to managing data across the enterprise accelerates
business insight for sound decision-making and maximum return
on investment. To compete in a data-driven economy, IT leaders and
application developers trust Scality to build sustainable, adaptable
solutions. Scality is recognized as a leader by Gartner and IDC. Follow
us @scality and LinkedIn. Visit www.scality.com, or subscribe to our
company blog.

Hewlett Packard Enterprise is the global edge-to-cloud platform-as-
a-service company that helps organizations accelerate outcomes by
unlocking value from all of their data, everywhere. Built on decades
of reimagining the future and innovating to advance the way people
live and work, HPE delivers unique, open and intelligent technology
solutions, with a consistent experience across all clouds and edges,
to help customers develop new business models, engage in new ways,
and increase operational performance. For more information, visit:

www.hpe.com.

29

https://www.scality.com/products/ring
https://www.scality.com/products/artesca
https://twitter.com/scality
https://www.linkedin.com/company/scality/
http://www.scality.com/
https://www.scality.com/solved/
http://www.hpe.com/

ABOUT ACTUALTECH MEDIA

() ActualTech Media

ActualTech Media is a B2B tech marketing company that connects en-
terprise IT vendors with IT buyers through innovative lead generation
programs and compelling custom content services.

ActualTech Media’s team speaks to the enterprise IT audience because
we’ve been the enterprise IT audience.

Our leadership team is stacked with former CIOs, IT managers, archi-
tects, subject matter experts and marketing professionals that help
our clients spend less time explaining what their technology does and
more time creating strategies that drive results.

If you're an IT marketer and you'd like your own custom
Gorilla Guide® title for your company, please visit
https:/www.gorilla.guide/custom-solutions/

30

	The New Business Imperatives
	Cloud-Native Applications: Building on Containers and Microservices
	Cloud-Native Architectures and Technologies
	Stateless vs. Stateful Applications
	Making Stateful Applications Work
	Kubernetes Storage Initiatives: CSI and COSI
	Storage for Containers vs. Storage in Containers

	Storage Challenges for Containerized Apps
	Persistent Storage for Stateful Apps
	On-Demand, Dynamic Provisioning
	Automation for DevOps

	Why Object Storage Is the Best Choice for Cloud-Native Development
	Object Storage Benefits
	The Scality Solution

